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Abstract

LRS Bianchi type-I models have been studied in the cosmological theory based on Lyra’s geome-
try. A new class of exact solutions has been obtained by considering a time dependent displacement
field for constant deceleration parameter models of the universe. The physical behaviour of the
models is examined in vacuum and in the presence of perfect fluids.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In 1917 Einstein introduced the cosmological constant into his field equations in order to
obtain a static cosmological model since, as is well known, without the cosmological term
his field equations admit only non-static solutions. After the discovery of the redshift of
galaxies and its explanation as being due to the expansion of the universe, Einstein regretted
his introduction of the cosmological constant. Recently, there has been much interest in the
cosmological term in context of quantum field theories, quantum gravity, supergravity the-
ories, Kaluza–Klein theories and the inflationary-universe scenario. Shortly after Einstein’s
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general theory of relativity Weyl, in 1918, suggested the first so-called unified field theory
based on a generalization of Riemannian geometry. In retrospect, it would seem more ap-
propriate to call Weyl’s theory a geometrized theory of gravitation and electromagnetism
(just as the general theory was a geometrized theory of gravitation only), rather than a
unified field theory. It is not quite clear to what extent the two fields have been unified,
even though they acquire (different) geometrical significances in the same geometry. The
theory was never taken seriously because it was based on the concept of non-integrability
of length transfer, and, as pointed out by Einstein, this implies that spectral frequencies of
atoms depend on their past histories and therefore have no absolute significance. Neverthe-
less, Weyl’s geometry provides an interesting example of non-Riemannian connections, and
recently Folland[1] has given a global formulation of Weyl manifolds thereby clarifying
considerably many of Weyl’s basic ideas.

In 1951 Lyra[2] proposed a modification of Riemannian geometry by introducing a gauge
function into the structureless manifold, as a result of which the cosmological constant arises
naturally from the geometry. This bears a remarkable resemblance to Weyl’s geometry. But
in Lyra’s geometry, unlike Weyl’s, the connection is metric preserving as in Remannian;
in other words, length transfers are integrable. Lyra also introduced the notion of a gauge
and in the “normal” gauge the curvature scalar in identical to that of Weyl. In consecutive
investigations, Sen[3], Sen and Dunn[4] proposed a new scalar–tensor theory of gravitation
and constructed an analogue of the Einstein field equations based on Lyra’s geometry. It
is thus possible[3] to construct a geometrized theory of gravitation and electromagnetism
much along the lines of Weyl’s “unified” field theory without, however, the inconvenience
of non-integrability length transfer.

Halford[5] has pointed out that the constant vector displacement fieldφi in Lyra’s geom-
etry plays the role of cosmological constantΛ in the normal general relativistic treatment.
It is shown by Halford[6] that the scalar–tensor treatment based on Lyra’s geometry pre-
dicts the same effects, within observational limits, as the Einstein’s theory. Several authors
Sen and Vanstone[7], Bhamra[8], Karade and Borikar[9], Kalyanshetti and Waghmode
[10], Reddy and Innaiah[11], Beesham[12], Reddy and Venkateswarlu[13], Soleng[14],
have studied cosmological models based on Lyra’s manifold with a constant displacement
field vector. However, this restriction of the displacement field to be constant is merely
one of convenience and there is no a priori reason for it. Beesham[15] considered FRW
models with time dependent displacement field. He has shown that by assuming the energy
density of the universe to be equal to its critical value, the models have thek = −1 geom-
etry. Singh and Singh[16–19], Singh and Desikan[20] have studied Bianchi type-I, -III,
Kantowaski–Sachs and a new class of cosmological models with time dependent displace-
ment field and have made a comparative study of Robertson–Walker models with constant
deceleration parameter in Einstein’s theory with cosmological term and in the cosmological
theory based on Lyra’s geometry. Soleng[14] has pointed out that the cosmologies based
on Lyra’s manifold with constant gauge vectorφ will either include a creation field and be
equal to Hoyle’s creation field cosmology[21–23]or contain a special vacuum field which
together with the gauge vector term may be considered as a cosmological term. In the latter
case the solutions are equal to the general relativistic cosmologies with a cosmological term.

The Einstein’s field equations are a coupled system of highly non-linear differential
equations and we seek physical solutions to the field equations for their applications in
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cosmology and astrophysics. In order to solve the field equations we normally assume
a form for the matter content or that space–time admits killing vector symmetries[24].
Solutions to the field equations may also be generated by applying a law of variation for
Hubble’s parameter which was proposed by Berman[25]. It is interesting to obverse that
the law yields a constant value for deceleration parameter. The variation of Hubble’s law
as assumed is not inconsistent with observation and has the advantage of providing simple
functional forms of the scale factor. In simplest case the Hubble law yields a constant value
for the deceleration parameter. It is worth observing that most of the well-known models
of Einstein’s theory and Brans–Deke theory with curvature parameterk = 0, including
inflationary models, are models with constant deceleration parameter. In earlier literature
cosmological models with a constant deceleration parameter have been studied by Berman
[25], Berman and Gomide[26], Johri and Desikan[27], Singh and Desikan[20], Maharaj
and Naidoo[28], Pradhan et al.[29] and others. This has provided us the motivation to
study models with constant deceleration parameter in Lyra geometry.

At the present state of evolution, the universe is spherically symmetric and the matter
distribution in it is on the whole isotropic and homogeneous. But in its early stages of evo-
lution, it could not have had such a smoothed out picture. Close to the big bang singularity,
neither the assumption of the spherically symmetric nor of isotropy can be strictly valid.
So we consider plane symmetry which is less restrictive than spherical symmetry and pro-
vides an avenue to study inhomogeneities. The present investigation is concern with local
rotational symmetry (LRS) Bianchi type-I cosmological model with both cases, viz., time
dependent and constant displacement vectors based on Lyra’s geometry in normal gauge.
All observations at every general point are rotationally symmetric about this direction. It
may be pointed out that similar results can be obtained in several other theories as well as
Einstein’s theory minimally coupled to a massless scalar field and in Hoyle’s creation field
theory [21], if the creation field is assumed to be time dependent. Such investigations have
not been undertaken in Hoyle’s theory so far.

2. Field equations

We consider LRS Bianchi type-I space–time

ds2 = dt2 − A2 dx2 − B2(dy2 + dz2), (1)

whereA = A(x, t), B = B(x, t). We take a perfect fluid form for the energy momentum
tensor

Tij = (p+ ρ)uiuj − pgij (2)

together with comoving coordinatesuiui = 1, whereui = (0,0,0,1).
The field equations in normal gauge for Lyra’s manifold, as obtained by Sen[3] are

Rij − 1
2gijR+ 3

2φiφj − 3
4gijφkφ

k = −8πGTij , (3)

whereφ is a time-like displacement field vector defined byφi = (0,0,0, β(t)) and other
symbols have their usual meaning as in Riemannian geometry. Here we want to mention
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the fact that the ansatz choosing the coordinate system with matter require the vector field
happens to be in the required form exactly in the matter comoving coordinates. The essential
difference between the cosmological theories based on Lyra geometry and the Riemannian
geometry lies in the fact that constant vector displacement fieldβ arises naturally from the
concept of gauge in Lyra geometry where as cosmological constantΛwas introduced in ad
hoc fashion in the usual treatment. Now the field equations can be set up and one obtains

2B̈

B
+ Ḃ2

B2
− B′2

A2B2
+ 3

4
β2 = −χp, (4)

Ḃ′ − B′Ȧ
A

= 0, (5)

Ä

A
+ B̈

B
+ ȦḂ

AB
− B′′

A2B
+ A′B′

A3B
+ 3

4
β2 = −χp, (6)

2B′′

A2B
− 2A′B′

A3B
+ B′2

A2B2
− 2ȦḂ

AB
− Ḃ2

B2
+ 3

4
β2 = χρ. (7)

The energy conservation equation is

χρ̇ + 3

2
ββ̇ +

[
χ(p+ ρ)+ 3

2
β2

] (
Ȧ

A
+ 2Ḃ

B

)
= 0, (8)

whereχ = 8πG. Here and in what follows a prime and a dot indicate partial differentiation
with respect tox and t, respectively.Eqs. (4)–(7)are four equations in five unknowns
A,B, β, p andρ. For complete determinacy of the system one extra condition is needed.
One way is to use an equation of state. The other alternative is a mathematical assumption
on the space–time and then to discuss the physical nature of the universe. In this paper we
confine ourselves to assume an equation of state

p = γρ, 0 ≤ γ ≤ 1. (9)

3. Solutions of the field equations

Eq. (5), after integration, yields

A = B′

l
, (10)

wherel is an arbitrary function ofx. Eqs. (4) and (6), with the use ofEq. (10), reduces to

B

B′

(
B̈

B

)′
+ Ḃ

B′
d

dt

(
B′

B

)
+ l2

B2

(
1 − Bl′

B′l

)
= 0. (11)

To get solution, let us assume

B′

B
= functions ofx. (12)
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By this choice,Eq. (11)gives after integration

B = lS(t), (13)

whereS(t) is an arbitrary function oft. With the help ofEq. (13), Eq. (10)becomes

A = l′

l
S. (14)

Now the metric(1) takes the form

ds2 = dt2 − S2(t)[dX2 + e2X(dy2 + dz2)], (15)

whereX = ln l. Eqs. (4) and (7)give

χp = 1

S2
− 2

S̈

S
− Ṡ2

S2
− 3

4
β2, (16)

χρ = 3Ṡ2

S2
− 3

S2
− 3

4
β2. (17)

UsingEq. (9)and eliminatingρ(t) from Eqs. (16) and (17)we have

2S̈

S
+ (1 + 3γ)

Ṡ2

S2
− (1 + 3γ)

1

S2
+ 3

4
(1 − γ)β2 = 0. (18)

Now the expressions for the energy density and the pressure are given by

χp = χγρ = 4γ

1 − γ
[
Ṡ2

S2
− 1

S2
+ S̈

2S

]
. (19)

The functionS(t) remains undetermined. To obtain its explicit dependence ont, one may
have to introduce additional assumptions. In the following we assume the deceleration
parameter to be constant to achieve this objective, i.e.

q = −SS̈
Ṡ2

= −
(
Ḣ +H2

H2

)
= b(constant), (20)

whereH = Ṡ/S is the Hubble parameter. The sign of deceleration parameterq indicates
whether the cosmological model inflates. The positive sign corresponds to “standard” decel-
erating models whereas the negative sign indicates inflation. To study inflationary models
we assumeq = constant. ThisEq. (20)is integrated to obtain

S(t) =
{

[a(t − t0)]1/(1+b) when b 	= −1,

m1 em2t when b = −1,
(21)

wherea,m1 andm2 are constants of integration and the constantt0 means the freedom of
choosing the time origin. UsingEq. (20)into Eqs. (18) and (19)lead to

β2 = 4

3(1 − γ)
[
(1 + 3γ)

1

S2
− (1 + 3γ − 2b)H2

]
, (22)
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Table 1
Values ofβ2 andρ for dust and radiation power-low models

γ β2 ρ

0
4

3

[
1

S2
− (1 − 2b)H2

]
2

χ

[
(2 − b)H2 − 2

S2

]
1

3
4

[
1

S2
− (1 − b)H2

]
3

χ

[
(2 − b)H2 − 2

S2

]

χρ = 1

1 − γ
[
2(2 − b)H2 − 4

S2

]
. (23)

The expressions forβ2 andρ corresponding toγ = 0,1/3 are summarized inTable 1. Now
we consider some physically interesting particular cases.

3.1. Flat models

The condition for spatially flat model is obtained as

1

S2
= (1 − b)H2. (24)

UsingEq. (24), Eqs. (22) and (23)reduce to

β2 = 4(3γ − 1)

3(γ − 1)
bH2 (25)

and

χρ = − 2bH2

γ − 1
. (26)

FromEq. (26)we see thatρ ≥ 0 if 1 > b > 0 since(γ − 1) < 0. FromEq. (25)we see
that since(γ − 1) < 0, β2 > 0 if γ < 1/3 andβ2 < 0 if γ > 1/3. The expressions forβ2

andρ corresponding toγ = 0,1/3 are given inTable 2.
Here we observe that whenγ = 1/3, β2 = 0 and the equations reduce to those of LRS

Bianchi type-I flat universe. Forb = −1, the energy density always comes negative. So we
only consider the caseb 	= −1.

Case(i): b 	= −1. For singular models,Eq. (17)leads to

S = mt1/(1+b). (27)

Table 2
Values ofβ2 andρ for dust and radiation power-law models

γ β2 ρ

0 4
3bH2 2bH2

1
3 0 3bH2
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UsingEq. (27)into Eqs. (25) and (26)yield

β2 = 4(3γ − 1)

3(γ − 1)

b

(1 + b)2t2 (28)

and

χρ = − 2b

(γ − 1)(1 + b)2t2 . (29)

The above expressions forβ2 and energy densityρ(t) are similar to those obtained by
Beesham[30] for a variable cosmological term∧(t) and energy densityρ(t). Hereβ2 plays
the role of a variable cosmological term∧. Eqs. (9) and (29)give

ρ + 3p = −2(1 + 3γ)

χ(γ − 1)

b

(1 + b)2t2 . (30)

It can be seen from the above expression that the conditionρ + 3p ≥ 0 would hold only
for 1 + 3γ ≥ 0, i.e.γ ≥ −1/3. So for values ofγ < −1/3, we cannot have viable models.

We observe from(28) and (29)thatβ2 andρ fall off as 1/t2 irrespective of the equation
of state. The expressions forβ2 andρ corresponding toγ = 0,1/3 are given inTable 3. It
can be easily seen fromEqs. (28) and (29)or otherwise also that the expressions forβ2 and
ρ will not be valid for the empty universe (i.e.p = ρ = 0) and the stiff matter (i.e.p = ρ)
models. So we shall not discuss these models.

3.2. Non-flat models

Case(i): b 	= −1. UsingEq. (27)into Eqs. (22) and (23)lead to

β2 = 4

3(γ − 1)

[
1 + 3γ − 2b

(1 + b)2t2 + 1 + 3γ

m2t2/(1+b)

]
(31)

and

χρ = 2

γ − 1

[
b− 2

(1 + b)2t2 + 2

m2t2/(1+b)

]
. (32)

FromEq. (32), we see thatρ ≥ 0 when−1< b < 2 as(γ − 1) < 0. FromEq. (30), we see
that forb < (1 + 3γ)/2,β2 < 0 for all timest > 0 as(γ − 1) < 0. It is also observed that
for (1 + 3γ)/2< b ≤ 2,β2 > 0 for

0< t2b/(1+b) <
(2b− 1 − 3γ)m2

(1 + 3γ)(1 + b)2 (33)

Table 3
Values ofβ2 andρ for dust and radiation power-law models

γ β2 ρ

0
4b

3(1 + b)2t2
2b

(1 + b)2t2
1

3
0

3b

(1 + b)2t2
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andβ2 < 0 for

t2b/(1+b) >
(2b− 1 − 3γ)m2

(1 + 3γ)(1 + b)2 . (34)

At

t2b/(1+b) = (2b− 1 − 3γ)m2

(1 + 3γ)(1 + b)2 , β2 = 0. (35)

Whenb = (1 + 3γ)/2, Eqs. (31) and (32)reduce to

β2 = 4(1 + 3γ)

3(γ − 1)m2t4/3(1+γ) (36)

and

χρ = 1

1 − γ
[

3(1 − γ)
(1 + b)2t2 − 4

m2t4/3(1+γ)

]
. (37)

FromEq. (36), it is obvious thatβ2 < 0 for all times as(γ − 1) < 0. The expressions for
β2 andρ cannot be determined for the empty universe (i.e.p = ρ = 0) and stiff matter
(p = ρ)models. The above expressions forρ andβ2 are similar to those ofρ andβ2 given
by Eqs. (35)–(38) of Singh and Desikan[20].

Physical behaviour of the model. In the case of a non-flat model whenb 	= −1, the Ricci
scalar becomes

R = 1

m2t2/(1+b) − 1 − b
1 + b t. (38)

It is observed fromEq. (38)that whent → 0 (i) R → ∞ if b = 0, (ii) R → ∞ if b ≥ 1
and (iii)R → ∞ if b ≤ −2. Eq. (38)also suggests that whent → ∞ (i) R → 0 if b ≥ 0
and (ii)R → ∞ if b ≤ −2.

The scalars of expansion and shear are given by

θ = 3

(1 + b)t , σ = 0. (39)

The model has singularity att = 0. At t → ∞, the expansion ceases. The gauge functionβ

was large in the beginning but decreases fast with the evolution of the model. Similar results
can be obtained for Hoyle’s creation field theory if the creation field is time dependent. Here
σ/θ = 0, which confirms the isotropic nature of the space–time which we have already
obtained inEq. (15).

Case(ii): b = −1. In this case,Eq. (20)becomes

Ḣ = 0 and H = H0 = constant. (40)

UsingEq. (40)into Eqs. (22) and (23)we have

β2 = 4

3(γ − 1)

[
3(1 + γ)H2

0 − 1 + 3γ

m2
1

e−2m2t

]
, (41)
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Table 4
Values ofβ2 andρ for dust and radiation exponential

γ β2 ρ

0 −4

3

[
3H2

0 − e−2m2t

m2
1

]
2

[
3H2

0 − 2 e−2m2t

m2
1

]

1

3
−4

[
2H2

0 − e−2m2t

m2
1

]
3

[
3H2

0 − 2 e−2m2t

m2
1

]

χρ = 2

1 − γ

[
3H2

0 − 2

m2
1

e−2m2t

]
. (42)

FromEq. (42), we observe thatρ > 0 only forH2
0 > 2/3m2

1 as(1− γ) > 0.β2 < 0 for all
times as can be seen fromEq. (41)as(γ − 1) < 0. For large times, i.e.t → ∞ we see that
β2 andρ would reach steady state, i.e.

β2 → 4

γ − 1
(1 + γ)H2

0 and χρ → 6

1 − γ H
2
0 . (43)

The strong energy condition, as mentioned by Ellis[31], ρ + 3p > 0 is also satisfied for
H2

0 > 2/3m2
1. The expressions forβ2 andρ corresponding toγ = 0,1/3 are given in

Table 4.

3.3. Empty universe

In the case of empty universe(p = ρ = 0) Eq. (42)reduces to

3H2
0 − 2

m2
1

e−2m2t = 0. (44)

UsingEq. (44)into Eq. (41)leads to

β2 = −2H2
0 . (45)

ForH0 to be real,β must be imaginary.
Physical behaviour of the model. The Ricci scalarR is

R = 2H2
0 − 1

m2
1

e−2m2t . (46)

It is easy to see that (i) whent → 0,R → 2H2
0 − 1/m2

1 and (ii) whent → ∞, R → 2H2
0

whenm2 > 0 andR → ∞ whenm2 < 0. The expansion and shear scalars are

θ = 3H0, σ = 0. (47)

The model represents an uniform expansion as can be seen fromEq. (47). The flow of the
fluid is geodetic as the acceleration vectorfi = (0,0,0,0).
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4. Conclusions

In this paper we have obtained exact solutions of Sen equations in Lyra geometry for
constant deceleration parameter. The nature of the displacement fieldβ(t) and the energy
densityρ(t) have been examined for both the (i) power-law and (ii) exponential expansion
of both the flat universe and the non-flat universe. The solutions obtained inSections 3.1
and 3.3are quite new solutions. Here the displacement fieldβ plays the role of a variable
cosmological termΛ.

Recently, there is an upsurge of interest in scalar fields in general relativity and alternative
theories of gravitation in the context of inflationary cosmology. Therefore, the study of
cosmological models in Lyra geometry may be relevant for inflationary models. Further the
space dependence of the displacement fieldβ is important for inhomogeneous models for
the early stage of the evolution of the universe. Besides, the implication of Lyra’s geometry
for astrophysical interesting bodies is still an open question. The problem of equations of
motion and gravitational radiation need investigation.
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